Metasurface holography, the reconstruction of holographic images by modulating the spatial amplitude and phase of light using metasurfaces, has emerged as a next-generation display technology. However, conventional fabrication techniques used to realize metaholograms are limited by their small patterning areas, high manufacturing costs, and low throughput, which hinder their practical use. Herein, a high efficiency hologram using a one-step nanomanufacturing method with a titanium dioxide nanoparticle-embedded-resin, allowing for high-throughput and low-cost fabrication is demonstrated. At a single wavelength, a record high theoretical efficiency of 96.9% is demonstrated with an experimentally measured conversion efficiency of 90.6% and zero-order diffraction of 7.3% producing an ultrahigh-efficiency, twin-image free hologram that can even be directly observed under ambient light conditions. Moreover, a broadband meta-atom with an average efficiency of 76.0% is designed, and a metahologram with an average efficiency of 62.4% at visible wavelengths from 450 to 650 nm is experimentally demonstrated.